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Abstract. Lattice constants are defined in a general way such that weak lattice constants, 
strong lattice constants, free multiplicities and coincidable occurrence factors are cases of 
the generalised lattice constants. A general method to express a lattice constant of one 
system as a linear combination of lattice constants of another system is described. Some 
properties of the conversion matrices are discussed. A systematic method to express the 
lattice constant of a reducible graph in terms of lattice constants of irreducible graphs is 
also studied. 

1. Introduction 

In perturbation expansions of thermodynamic properties of lattice models it is most 
convenient to represent the various terms in the expansions by linear graphs (Domb 
1974). The number of terms in an expansion which are represented by a graph g is 
usually called the lattice constant of the graph g on the lattice. Associated with different 
types of series expansions are several lattice constant systems. Well known examples 
are the weak lattice constants used in the high-temperature series expansion and the 
strong lattice constants occurring in the low-temperature series expansion (Domb 1960). 
Other lattice constant systems studied are the free multiplicities (Wortis 1974) and the 
coincidable occurrence factors (Chen and Lee 1980). 

The lattice constants mentioned above are extensive in the sense that if g is a 
connected graph and if all vertices of the lattice G are equivalent then the lattice 
constants L(g; G) are proportional to the number of vertices of G. There are lattice 
constants which are not extensive, such as the weak full perimeter lattice constant and 
the strong full perimeter lattice constant (Essam 1967). Only extensive lattice constant 
system will be considered in this article. We will define lattice constants in a general 
way such that all extensive lattice constant systems studied before are cases of the 
generalised lattice constants. 

All extensive lattice constant systems are linearly related and are derivable from 
one another. The conversion matrix that transforms the set of strong lattice constants 
to that of weak lattice constants was studied by Sykes et a1 (1966); the relation of the 
free multiplicities to the weak lattice constants was discussed by Wortis (1974); and 
the connection between the coincidable occurrence factors and the weak lattice con- 
stants was considered by Chen and Lee (1980). In this article a general method to 
express a lattice constant of any system as a linear combination of lattice constants of 
another system is studied. 
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In any lattice constant system the lattice constant of a reducible graph can be 
expressed as a function of lattice constants of irreducible graphs. The reduction of 
disconnected lattice constants to connected lattice constants, and of articulated lattice 
constants to star lattice constants, had been considered by Domb (1960, 1974) and 
Sykes et a1 (1966) for the weak lattice constant system. We present in this article a 
systematic method to obtain the reduction of lattice constants in any lattice constant 
system. 

The lattice constants L,(g;  G )  are defined in 0 2. We only consider the case that 
g are unrooted graphs. The method to obtain the expression of a lattice constant as 
a linear combination of lattice constants of another system is studied in 0 3. The 
method to express the lattice constant of a reducible graph in terms of lattice constants 
of irreducible graphs is studied in 0 4. Conclusions are given in 0 5 .  

2. Lattice constants 

Consider a graph (or lattice) G of N vertices and a graph g of p vertices. The incidence 
matrix A (for graph terminology see Domb (1974)) of the graph G is defined as 

A. .  = 1 if i # j and vertices i and j are connected, 

= O  otherwise. (1) 
A lattice constant of g on G is the number of ways to select p vertices from G according 
to the connectivity of g. It can be defined generally as 

where the.subscript a refers to different lattice constant systems. The summation Z,"(,, 
indicates that we may choose any vertex of G as the ith vertex of g. The first product 

covers all connected pairs of vertices of g, and the second product H(d) covers all 
disconnected pairs of vertices. 

The function Co(x , ,  x j )  descrilxs the requirement that a pair of vertices x ,  and x, 
of G can be selected as a connected pair of vertices i and j of g, while Do(x,, x,) 
describes the condition that two vertices x ,  and x ,  of G can be selected as a 
disconnected pair of vertices m and n of the graph g. The functions CO and D, have 
only two values 0 and 1. All possible forms of C, and 0, are shown in table 1 .  Since 
f7(x i ,  X , ) ( = L ~ ~ , ~ , )  and &(xi, x,)(=O) give only trivial results, they will not be considered 
further. 

As L,(g;  G) are extensive, CO has only two alternatives, f5 and f6. D, is less 
restricted, and can be f,, f2, f3 or f4. From the two CO functions and the four D, 

Table 1. Possible functions of C,(x,, x,) and D,(x,, x,). Since either x, and xJ can be 
connected or disconnected, or x, = x,, eight different functions can be defined. Ay,xJ is 
defined by ( I )  and S,,,, is the Kronecker delta. 

f , ( X , ,  x,)= 1 
f2(',, 'J) I - ' \ , X j  f ( x , ,  'X,r, 

fS('t9 'J)= 'X,X, +'X!X, 

fdx, ,  x,) = 1 - Ay,,, 
f4(x,. x,) = 1 - A,,r,  - 'x,x, 

f,(X,, x,) = 
fdx,, XI) = 0 
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functions, eight different lattice constant systems can be constructed. They are shown 
in table 2.  Probably all non-trivial extensive lattice constant systems are included in 
this table. Among the eight systems only four of them ( L , ,  L3, L4 and L5)  have been 
studied. The weak lattice constant of g on G, usually denoted as ( 8 ;  G) ,  is related to 
L3 by ( g ;  G )  = L, (g ;  G ) / S ( g ) ,  where S ( g )  is the symmetry number of the graph g. The 
strong lattice constant of g, denoted as [g ,  GI, is given by [ g ;  GI = L4(g, G ) / S ( g ) .  Two 
other lattice constant systems studied before are the free multiplicity m(g, G )  = 
L , ( g ;  G ) ,  and the coincidable occurrence factor C ( g ;  G )  = L s ( g ;  G) .  

Table 2. Lattice constant systems L,(g; G) defined by (2). 

Lattice 
constants C,(X,, x,) D,(x, x,) 

3. Linear relations between lattice constant systems 

All lattice constant systems listed in table 2 are linearly related. As mentioned in 0 1,  
methods to find the expressions of L,  in terms of L , ,  L4 and Ls, respectively (and their 
inversions), had been studied. We will describe below a general method to express an 
arbitrary lattice constant L, as a linear combination of lattice constants of another 
system L,. 

We first express C,(x i ,  x,) and D o ( x i ,  x,) in terms of C,(xi ,  x j ) ,  &(x i ,  x j )  and 
The general forms are 

C o ( X i 9  x j )  = CpCXi, Xj) + q a ~ a x , x ,  

Do(x i ,  x j )  = Dp(xt,  x j )  + ru,Cp(xi, x j )  +su,ax,x ,  

( 3 a )  

( 3  b)  

and 

where q,, = 0, f. 1 ; r,, = 0 ,  f. 1 and sop = 0, f 1, 1 2 .  The specific forms of ( 3 a )  and (36)  
for all possible values of cy and /3 are given in table 3 .  The lattice constant L , ( g ;  G )  
of ( 2 )  is then rewritten as 

where Z{X} stands for the p-tuple sum, and the arguments xi  arTd xj of the functions 
C , ( x ,  x j ) ,  &(x i ,  x j )  and a , ,  have been dropped for simplicity. The indices cy and /3 
in the coefficients q, r and s are also omitted. 

For a graph of p vertices and 1 edges there are in total p ( p  - 1)/2 factors in the 
double products of (4). If there are n ,  terms ( n , =  1 or 2 )  in each factor associated 
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Table3. Expressing Cu(x,, x,) and D,(x,, xJ) as linear combinations of Ca(xi, x,), Da(xl, x J )  
and (see (3)). The arguments are omitted for simplicity. 

P 1 2 3 4 5 6 I 8 

c, = c C C C c-6 c-6 C - S  C - S  

c,= c C C C c-S c-S C - S  C - S  

c,= c C C C c - 6  c-S C - S  C - S  

c,= c C C C c-6 c-S C - S  C - 6  

c,= C + S  C + S  C + S  C+S C C C C 

c,= c+s C + S  c + s  C+S  c C C C 

c1= C + S  C + S  C+S C + S  C C C C 

c*= c+s c i s  C i S  D+S C C C C 

D , =  D D + C  D+S D + C + S  D D + C - S  D+S D + C  

D,= D - C  D D - C + S  D+S D - C + S  D D-C+2S  D + S  

D,= D - S  D + C - S  D D + C  D-S  D+C-ZS  D D + C - S  

D4= D - C - S  D - S  D - C  D D - C  D-S  D - C + S  D 

D,= D D + C  D+S D + C + S  D D - k C - 6  D + S  D + C  

D6= D - C  D D - C + S  D+S D - C + S  D D -  C + 2 S  D +S 

D,= D - 6  D i C - 6  D D + C  D - 6  D+C-ZS D D i C - S  

De= D - C - S  D - S  D - C  D D - C  D-S  D - C + S  D 

with a connected pair of vertices, and nd terms ( n d  = 1,2, or 3) with a disconnected 
pair of vertices, there will be a number Nt = ( n d ) p ( p - ’ ) ’ 2 (  n,/ nd)’ of terms in the expansion 
of (4). Each term will represent a lattice constant L p ( g ‘ ;  G) of a certain graph g’. Of 
course there are also p @  - 1)/2 factors in each term L p ( g ’ ;  G) .  Each factor describes 
the connectivity of a pair of vertices of the graph g’ .  A factor C p ( x i ,  x j )  indicates that 
the vertices i and j of the graph g’ are connected; a factor Dp(xk,  x , )  shows that the 
vertices k and 1 of the graph g’  are disconnected; and a factor axmXn means that the 
vertices m and n are to be merged (to be glued together). When some vertices are 
merged, the graph g’ will contain less than p vertices. 

It should be noted that some of the N, terms in the expansion of (4) may vanish. 
For example consider the following case: 

Since D p ( x k ,  xk) = 0,  or 1, the term given by ( 5 )  vanishes if Do(&,  x k )  = 0. On the other 
hand the factor Dp(xk,  xk) can be dropped if it equals 1. For the purpose of determining 
whether a term vanishes or not, it is most convenient to represent diagrammatically 
the factor C p ( x i ,  x i )  by a full line connecting vertices i and j ,  the factor D,(x, ,  x i )  by 
a broken line connecting vertices k and 1, and the factor axmxn by a wavy line joining 
vertices m and n. If C,(x, x )  = 0, a term vanishes when two vertices connected directly 
by a full line are also connected indirectly by wavy lines. Similarly, if D p ( x ,  x )  = 0, a 
term vanishes when two vertices connected directly by a broken line are also connected 
indirectly by wavy lines. 

When vertices connected by wavy lines (8 functions) are merged, the graph g’ may 
contain multiple edges. That is, a pair of vertices xi  and xj may be connected by 
several full lines ( C  functions) and broken lines ( D  functions). Mathematically this 
means that the term contains the factors C l ; ( x ,  x j ) D z ( x i ,  x j ) .  The multiple edges can 
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then be reduced to single edges by the properties C; = C,, D,” = D, and 

Cp(xi,  xj>Dp(xi,  xj)  = Cp(xi,  xj)  for p = 1,3,5 

= O  for p = 2,4,8, (6b)  

for p = 6 ,  (6c )  - a , ,  
= Cp (xi, xj)  - Sx(x ,  for p = 7 .  ( 6 4  

- 

For p = 6 and 7, S functions are involved. The vertices xi  and xj should be merged, 
and the same procedure should be repeated. 

To illustrate the method described above, we consider the following example which 
expresses L , ( g ;  G) in terms of L4(g’ ;  G): 

Here the arguments ( i j )  are shorthand notations of (x i ,  x,). 
The relations CI = C4 and DI = C4 +D4+S (see table 3) have been used to obtain 

(7b). The first term in (76) gives the first term in ( 7 c ) .  The second and fourth terms 
in (7b )  are equal and give the second term in (7c) .  The fifth term in (7b )  vanishes 
because C4(x ,  x )  = 0; the sixth and eighth terms vanish because C4D4 = 0. Finally, the 
rest of the terms in (76) contribute to the fourth term in (7c). 

In general we can express the linear relations between two systems of lattice constant 
in the form 

From the procedure described above some properties of the coefficients tGP can be 
observed easily: 

(i) the diagonal element tEP = 1, 
(ii) tGP = 0 if g, has more vertices than g,,  
(iii) tP;’ = 0 if gJ and g,  have the same number of vertices and g ,  is not a subgraph 

Property (iii) comes from the fact that if g, and g ,  have the same number of vertices 
then the term L,(g,;  G) must result from a term in the expansion of (4) which does 
not involve S functions. Then gJ is obtained from adding some edges to g,.  Therefore, 
g ,  is a subgraph of g, and g, has more edges than g,.  The above properties are true 
for all a and p. For certain sets of a and p if rap = O  (see (3)), the element t r P  is 

of g,. 
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non-zero only if gj contains fewer vertices than g,. And if gap = sap = 0, t;P exists only 
if g,  is a subgraph of g,. 

From the above discussion, we can properly select a set of a finite number of graphs 
(for example, all connected graphs containing up top  vertices) and define the conversion 
matrix Tap with elements t t P  such that 

(9) 

where L, and L, are column vectors the elements of which are the lattice constants 
L,(g,; G )  and L,(g,; G )  for the set of graphs considered. Among the eight lattice 
constant systems shown in table 2, there are 28 conversion matrices Tmp for each proper 
set of graphs considered. Not all of the matrices are independent. 

From the procedure of expressing L,(g,; G )  in terms of Lp(g,; G ) ,  it is easy to see 
that two matrices TeP and 

L, = Tap * Lp 

are identical if 

gap = 9a’P’, rep = r,,,,, sap = So)@,, ( 1 Oa, b, c) 

CdX, x >  = C&, X I ,  D p ( x ,  x )  = D P ’ ( X ,  X I ,  (l la,  b)  

C p ( x ,  x ’ ) D p ( x ,  x ‘ )  = C p * ( X ,  x ’ ) D p . ( x ,  x’) .  (1 IC) 

The above equations, however, cannot be simultaneously satisfied for any different 
pairs of ap and a’p’.  If gap = = 0, all the requirements described by 
(1  1) can be waived because no 8 functions are involved. Then we have the identities 
TI,* = T3,4 = T5,8 and T2,,  = T4,3 = T8,5. It is straightforward to see from (9) that Tap = 
( Tpo)-l. We also note that for any y, Tap = T a y .  Typ = Tay * ( T p y ) - ’ .  Therefore a 
knowledge of eight of the Tmp, e.g. T,,, gives any of the 28 T-matrices. 

and 

= sap = 

4. Reduction of lattice constants 

Consider two graphs ga and gb. Each of them has a subgraph isomorphic to a complete 
graph g,. (A graph is complete if all pairs of vertices are connected. The simplest 
complete graphs are single edge, triangle, etc.) If the two subgraphs are brought into 
coincidence, i.e. the two subgraphs are ‘glued’ together vertex by vertex and edge by 
edge, to form a graph g,, then g ,  is called a reducible graph. A graph which cannot 
be formed in this way is called irreducible. A reducible graph has the product property 
that 

Ll(gr; g)=L, (ga;  G )  * Ll (gb;  G) /L , (gc;  GI,  (12) 

provided G is a regular lattice. By regular lattice we mean that all vertices are equivalent 
and all edges are equivalent. The proof of (1  2) is simple and will not be given. We 
only note that if all edges of G are equivalent then all subgraphs of G which are 
isomorphic to a complete graph are equivalent. 

In all lattice constant systems if G is a regular lattice, L,(g,; G )  of a reducible 
graph g,  can be expressed in terms of lattice constants L,(gi; G )  of irreducible graphs 
gi.  The numbers of vertices of gi  are equal to or less than the number of vertices of 
g,. Examples of the reduction of lattice constants have been given by Domb (1960, 
1974) for the weak lattice constant system L3. We will show below why and how such 
a reduction can be done for an arbitrary lattice constant system L,. 
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We first express L,(gr; G) as a linear combination of L,(g; G), i.e. 

Ll(gr; G) = Lcx(gr; G) + 1 t:aLu(gi; G), 
i z r  

where we have used t:P = 1, and separated the diagonal term from the summation. 
Since g, is reducible, (13) can be rewritten as 

where we have made use of (12). Each graph g,, gb and g, has a smaller number of 
vertices than g,. The lattice constants Ll(ga; G), LI(gb; G) and L,(gc; G) can further 
be expressed in terms of L,(g; G) with graphs g containing less vertices than g,. 
Therefore, L,(g,; G) can be expressed in terms of lattice constants L,(g:; G), where 
each graph g: either contains fewer vertices than gr, or has the same number of vertices 
as g,, but with more edges than g,. If a graph g: is still reducible, we can repeat the 
same procedure and express L,(g:; G) in terms of La(g:; G), etc. Eventually, L,(gr; G) 
is expressed in terms of lattice constants of irreducible graphs which have either the 
same number of vertices as g,, or fewer vertices than g,. 

Two examples of the reduction of lattice constants are shown below: 

The lattice constants L,(g; G) are abbreviated as L,(g) for simplicity. 

5. Conclusions 

We have considered eight different systems of extensive lattice constants. Some 
properties of these lattice constants are discussed. In particular we investigate a general 
method to express a lattice constant L,(g,; G) as a linear combination of L,(g,; G). 
Such linear relations hold for any graph G. Properties of the coefficients t t P  are also 
discussed. If the order (number of vertices) of g, is low, the coefficients t t P  can be 
obtained easily by the method described in P 3. For higher-order graphs g,, the 
coefficients are difficult to determine manually. However, we can represent and identify 
graphs numerically (Chen and Lee 1981) and determine the coefficients by a computer. 
A straightforward application of the present method to relate L ,  in terms of L3 has 
been carried out for graphs with up to nine edges. The results are too lengthy to be 
presented here, and will be published elsewhere. 

For a regular lattice G, lattice constants L,(g; G) of all reducible graphs (including 
all articulated graphs) can be expressed in terms of lattice constants of irreducible 
graphs. A general method to find the reduction of lattice constants has been described. 

In this article lattice constants are defined only for unrooted graphs (i.e. all vertices 
are of the same species). If the graphs g are rooted (having different species of vertices), 
differented pairs of vertices may have different C, (and C,) functions. A large number 
of different lattice constant systems exist. But only a few of them are useful and need 
further studies. 
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