Lattice constant systems and some of their properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 172225
(http://iopscience.iop.org/0305-4470/17/11/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:54

Please note that terms and conditions apply.

Lattice constant systems and some of their properties \uparrow

H H Chen and Felix Lee
Institute of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China

Received 18 October 1983, in final form I February 1984

Abstract

Lattice constants are defined in a general way such that weak lattice constants, strong lattice constants, free multiplicities and coincidable occurrence factors are cases of the generalised lattice constants. A general method to express a lattice constant of one system as a linear combination of lattice constants of another system is described. Some properties of the conversion matrices are discussed. A systematic method to express the lattice constant of a reducible graph in terms of lattice constants of irreducible graphs is also studied.

1. Introduction

In perturbation expansions of thermodynamic properties of lattice models it is most convenient to represent the various terms in the expansions by linear graphs (Domb 1974). The number of terms in an expansion which are represented by a graph g is usually called the lattice constant of the graph g on the lattice. Associated with different types of series expansions are several lattice constant systems. Well known examples are the weak lattice constants used in the high-temperature series expansion and the strong lattice constants occurring in the low-temperature series expansion (Domb 1960). Other lattice constant systems studied are the free multiplicities (Wortis 1974) and the coincidable occurrence factors (Chen and Lee 1980).

The lattice constants mentioned above are extensive in the sense that if g is a connected graph and if all vertices of the lattice G are equivalent then the lattice constants $L(g ; G)$ are proportional to the number of vertices of G. There are lattice constants which are not extensive, such as the weak full perimeter lattice constant and the strong full perimeter lattice constant (Essam 1967). Only extensive lattice constant system will be considered in this article. We will define lattice constants in a general way such that all extensive lattice constant systems studied before are cases of the generalised lattice constants.

All extensive lattice constant systems are linearly related and are derivable from one another. The conversion matrix that transforms the set of strong lattice constants to that of weak lattice constants was studied by Sykes et al (1966); the relation of the free multiplicities to the weak lattice constants was discussed by Wortis (1974); and the connection between the coincidable occurrence factors and the weak lattice constants was considered by Chen and Lee (1980). In this article a general method to express a lattice constant of any system as a linear combination of lattice constants of another system is studied.
\dagger Work supported by the National Science Council of the Republic of China.

In any lattice constant system the lattice constant of a reducible graph can be expressed as a function of lattice constants of irreducible graphs. The reduction of disconnected lattice constants to connected lattice constants, and of articulated lattice constants to star lattice constants, had been considered by Domb (1960, 1974) and Sykes et al (1966) for the weak lattice constant system. We present in this article a systematic method to obtain the reduction of lattice constants in any lattice constant system.

The lattice constants $L_{\alpha}(g ; G)$ are defined in $\S 2$. We only consider the case that g are unrooted graphs. The method to obtain the expression of a lattice constant as a linear combination of lattice constants of another system is studied in §3. The method to express the lattice constant of a reducible graph in terms of lattice constants of irreducible graphs is studied in §4. Conclusions are given in §5.

2. Lattice constants

Consider a graph (or lattice) G of N vertices and a graph g of p vertices. The incidence matrix A (for graph terminology see Domb (1974)) of the graph G is defined as

$$
\begin{align*}
A_{i j} & =1 & & \text { if } i \neq j \text { and vertices } i \text { and } j \text { are connected, } \\
& =0 & & \text { otherwise. } \tag{1}
\end{align*}
$$

A lattice constant of g on G is the number of ways to select p vertices from G according to the connectivity of g. It can be defined generally as

$$
\begin{equation*}
L_{\alpha}(g ; G)=\sum_{x_{1}=1}^{N} \ldots \sum_{x_{1}=1}^{N} \ldots \sum_{x_{p}=1}^{N} \prod_{\langle i j\rangle}^{(\mathrm{c})} C_{\alpha}\left(x_{i}, x_{j}\right) \prod_{\langle m n)}^{(\mathrm{d})} D_{\alpha}\left(x_{m}, x_{n}\right), \tag{2}
\end{equation*}
$$

where the subscript α refers to different lattice constant systems. The summation $\Sigma_{\boldsymbol{x}_{1}=1}^{N}$ indicates that we may choose any vertex of G as the i th vertex of g. The first product $\Pi^{(c)}$ covers all connected pairs of vertices of g, and the second product $\Pi^{(d)}$ covers all disconnected pairs of vertices.

The function $C_{\alpha}\left(x_{1}, x_{j}\right)$ describes the requirement that a pair of vertices x_{1} and x_{j} of G can be selected as a connected pair of vertices i and j of g, while $D_{\alpha}\left(x_{m}, x_{n}\right)$ describes the condition that two vertices x_{m} and x_{n} of G can be selected as a disconnected pair of vertices m and n of the graph g. The functions C_{α} and D_{α} have only two values 0 and 1 . All possible forms of C_{α} and D_{α} are shown in table 1. Since $f_{7}\left(x_{i}, x_{j}\right)\left(=\delta_{x_{i}, x_{j}}\right)$ and $f_{8}\left(x_{i}, x_{j}\right)(=0)$ give only trivial results, they will not be considered further.

As $L_{\alpha}(g ; G)$ are extensive, C_{α} has only two alternatives, f_{5} and $f_{6} . D_{\alpha}$ is less restricted, and can be f_{1}, f_{2}, f_{3} or f_{4}. From the two C_{α} functions and the four D_{α}

Table 1. Possible functions of $C_{\alpha}\left(x_{i}, x_{j}\right)$ and $D_{\alpha}\left(x_{1}, x_{j}\right)$. Since either x_{1} and x_{j} can be connected or disconnected, or $x_{1}=x_{j}$, eight different functions can be defined. $A_{x_{i}, x_{2}}$, is defined by (1) and $\delta_{x, x}$, is the Kronecker delta.

$f_{1}\left(x_{1}, x_{j}\right) \equiv 1$	
$f_{2}\left(x_{i}, x_{j}\right)=1-\delta_{\text {, }}$,	$f_{6}\left(x_{1}, x_{j}\right) \equiv A_{x, x, x}$
$f_{3}\left(x_{1}, x_{j}\right)=1-A_{r_{r, 2}}$	$f_{7}\left(x_{i}, x_{j}\right) \equiv \delta_{x, x_{j}}$
	$f_{8}\left(x_{r}, x_{j}\right) \equiv 0$

functions, eight different lattice constant systems can be constructed. They are shown in table 2. Probably all non-trivial extensive lattice constant systems are included in this table. Among the eight systems only four of them (L_{1}, L_{3}, L_{4} and L_{5}) have been studied. The weak lattice constant of g on G, usually denoted as $(g ; G)$, is related to L_{3} by $(g ; G)=L_{3}(g ; G) / S(g)$, where $S(g)$ is the symmetry number of the graph g. The strong lattice constant of g, denoted as $[g, G]$, is given by $[g ; G]=L_{4}(g, G) / S(g)$. Two other lattice constant systems studied before are the free multiplicity $m(g, G)=$ $L_{1}(g ; G)$, and the coincidable occurrence factor $C(g ; G)=L_{5}(g ; G)$.

Table 2. Lattice constant systems $L_{\alpha}(g ; G)$ defined by (2).

Lattice constants	$C_{\alpha}\left(x_{1}, x_{j}\right)$	$D_{\alpha}\left(x_{1} x_{j}\right)$
L_{1}	$A_{x_{2}, x_{j}}$	1
L_{2}	$A_{x_{2}, x}$	$1-A_{x_{1} x_{j}}$
L_{3}	$A_{x, x}$	$1-\delta_{x_{1}, x_{j}}$
L_{4}	$A_{x_{1} x_{1}}$	$1-A_{x_{1}, x_{j}}-\delta_{x_{1} x_{j}}$
L_{5}	$A_{x_{1} x_{j}}+\delta_{x_{1} x_{j}}$	1
L_{6}	$\boldsymbol{A}_{x_{1, x} x_{j}}+\delta_{x_{x, x_{j}}}$	$1-A_{x_{1} x_{j}}$
L_{7}	$A_{x_{1}, x_{j}}+\delta_{x_{1}, x_{y}}$	$1-\delta_{x_{1} x_{j}}$
L_{8}	$\boldsymbol{A}_{x_{1} x_{j} x_{j}}+\delta_{x_{r, x} x_{j}}$	$1-A_{x_{1}, x_{j}}-\delta_{x_{1} x_{j}}$

3. Linear relations between lattice constant systems

All lattice constant systems listed in table 2 are linearly related. As mentioned in § 1, methods to find the expressions of L_{3} in terms of L_{1}, L_{4} and L_{5}, respectively (and their inversions), had been studied. We will describe below a general method to express an arbitrary lattice constant L_{α} as a linear combination of lattice constants of another system L_{β}.

We first express $C_{\alpha}\left(x_{i}, x_{j}\right)$ and $D_{\alpha}\left(x_{i}, x_{j}\right)$ in terms of $C_{\beta}\left(x_{i}, x_{j}\right), D_{\beta}\left(x_{i}, x_{j}\right)$ and $\delta_{x_{i} x_{j}}$ The general forms are

$$
\begin{equation*}
C_{\alpha}\left(x_{i}, x_{j}\right)=C_{\beta}\left(x_{i}, x_{j}\right)+q_{\alpha \beta} \delta_{x_{1} x_{i}} \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\alpha}\left(x_{i}, x_{j}\right)=D_{\beta}\left(x_{i}, x_{j}\right)+r_{\alpha \beta} C_{\beta}\left(x_{i}, x_{j}\right)+s_{\alpha \beta} \delta_{x_{i}, x_{j}} \tag{3b}
\end{equation*}
$$

where $q_{\alpha \beta}=0, \pm 1 ; r_{\alpha \beta}=0, \pm 1$ and $s_{\alpha \beta}=0, \pm 1, \pm 2$. The specific forms of ($3 a$) and ($3 b$) for all possible values of α and β are given in table 3. The lattice constant $L_{\alpha}(g ; G)$ of (2) is then rewritten as

$$
\begin{equation*}
L_{\alpha}(g ; G)=\sum_{\{x\}} \prod^{(\mathrm{c})}\left(C_{\beta}+q \delta\right) \prod^{(\mathrm{d})}\left(D_{\beta}+r C_{\beta}+s \delta\right) \tag{4}
\end{equation*}
$$

where $\Sigma_{\{x\}}$ stands for the p-tuple sum, and the arguments x_{i} and x_{j} of the functions $C_{\beta}\left(x_{i}, x_{j}\right), D_{\beta}\left(x_{i}, x_{j}\right)$ and $\delta_{x_{1} x_{j}}$ have been dropped for simplicity. The indices α and β in the coefficients q, r and s are also omitted.

For a graph of p vertices and l edges there are in total $p(p-1) / 2$ factors in the double products of (4). If there are n_{c} terms ($n_{c}=1$ or 2) in each factor associated

Table 3. Expressing $C_{\alpha}\left(x_{i}, x_{j}\right)$ and $D_{\alpha}\left(x_{i}, x_{j}\right)$ as linear combinations of $C_{\beta}\left(x_{i}, x_{j}\right), D_{\beta}\left(x_{i}, x_{j}\right)$ and $\delta_{x_{1}, x_{1}}$ (see (3)). The arguments are omitted for simplicity.

β	1	2	3	4	5	6	7	8
$C_{1}=$	C	C	C	C	$C-\delta$	$C-\delta$	$C-\delta$	$C-\delta$
$D_{1}=$	D	$D+C$	$D+\delta$	$D+C+\delta$	D	$D+C-\delta$	$D+\delta$	$D+C$
$C_{2}=$	C	C	C	C	$C-\delta$	$C-\delta$	$C-\delta$	$C-\delta$
$D_{2}=$	$D-C$	D	$D-C+\delta$	$D+\delta$	$D-C+\delta$	D	$D-C+2 \delta$	$D+\delta$
$C_{3}=$	C	C	C	C	$C-\delta$	$C-\delta$	$C-\delta$	$C-\delta$
$D_{3}=$	$D-\delta$	$D+C-\delta$	D	$D+C$	$D-\delta$	$D+C-2 \delta$	D	$D+C-\delta$
$C_{4}=$	C	C	C	C	$C-\delta$	$C-\delta$	$C-\delta$	$C-\delta$
$D_{4}=$	$D-C-\delta$	$D-\delta$	$D-C$	D	$D-C$	$D-\delta$	$D-C+\delta$	D
$C_{5}=$	$C+\delta$	$C+\delta$	$C+\delta$	$C+\delta$	C	C	C	C
$D_{5}=$	D	$D+C$	$D+\delta$	$D+C+\delta$	D	$D+C-\delta$	$D+\delta$	$D+C$
$C_{6}=$	$C+\delta$	$C+\delta$	$C+\delta$	$C+\delta$	C	C	C	C
$D_{6}=$	$D-C$	D	$D-C+\delta$	$D+\delta$	$D-C+\delta$	D	$D-C+2 \delta$	$D+\delta$
$C_{7}=$	$C+\delta$	$C+\delta$	$C+\delta$	$C+\delta$	C	C	C	C
$D_{7}=$	$D-\delta$	$D+C-\delta$	D	$D+C$	$D-\delta$	$D+C-2 \delta$	D	$D+C-\delta$
$C_{8}=$	$C+\delta$	$C+\delta$	$C+\delta$	$D+\delta$	C	C	C	C
$D_{8}=$	$D-C-\delta$	$D-\delta$	$D-C$	D	$D-C$	$D-\delta$	$D-C+\delta$	D

with a connected pair of vertices, and n_{d} terms ($n_{\mathrm{d}}=1,2$, or 3) with a disconnected pair of vertices, there will be a number $N_{\mathrm{t}}=\left(n_{\mathrm{d}}\right)^{p(p-1) / 2}\left(n_{\mathrm{c}} / n_{\mathrm{d}}\right)^{l}$ of terms in the expansion of (4). Each term will represent a lattice constant $L_{\beta}\left(g^{\prime} ; G\right)$ of a certain graph g^{\prime}. Of course there are also $p(p-1) / 2$ factors in each term $L_{\beta}\left(g^{\prime} ; G\right)$. Each factor describes the connectivity of a pair of vertices of the graph g^{\prime}. A factor $C_{\beta}\left(x_{i}, x_{j}\right)$ indicates that the vertices i and j of the graph g^{\prime} are connected; a factor $D_{\beta}\left(x_{k}, x_{l}\right)$ shows that the vertices k and l of the graph g^{\prime} are disconnected; and a factor $\delta_{x_{m} x_{n}}$ means that the vertices m and n are to be merged (to be glued together). When some vertices are merged, the graph g^{\prime} will contain less than p vertices.

It should be noted that some of the N_{t} terms in the expansion of (4) may vanish. For example consider the following case:

$$
\begin{equation*}
\sum_{x_{1}} \ldots \sum_{x_{i}} \sum_{x_{j}} \sum_{x_{k}} \ldots D_{\beta}\left(x_{i}, x_{j}\right) \delta_{x_{i} x_{k}} \delta_{x_{k} x_{k}} \ldots=\sum_{x_{i}} \ldots \sum_{x_{k}} \ldots D_{\beta}\left(x_{k}, x_{k}\right) \ldots . \tag{5}
\end{equation*}
$$

Since $D_{\beta}\left(x_{k}, x_{k}\right)=0$, or 1 , the term given by (5) vanishes if $D_{\beta}\left(x_{k}, x_{k}\right)=0$. On the other hand the factor $D_{\beta}\left(x_{k}, x_{k}\right)$ can be dropped if it equals 1 . For the purpose of determining whether a term vanishes or not, it is most convenient to represent diagrammatically the factor $C_{\beta}\left(x_{i}, x_{j}\right)$ by a full line connecting vertices i and j, the factor $D_{\beta}\left(x_{k}, x_{i}\right)$ by a broken line connecting vertices k and l, and the factor $\delta_{x_{m} x_{n}}$ by a wavy line joining vertices m and n. If $C_{\beta}(x, x)=0$, a term vanishes when two vertices connected directly by a full line are also connected indirectly by wavy lines. Similarly, if $D_{\beta}(x, x)=0$, a term vanishes when two vertices connected directly by a broken line are also connected indirectly by wavy lines.

When vertices connected by wavy lines (δ functions) are merged, the graph g^{\prime} may contain multiple edges. That is, a pair of vertices x_{i} and x_{j} may be connected by several full lines (C functions) and broken lines (D functions). Mathematically this means that the term contains the factors $C_{\beta}^{n}\left(x_{i}, x_{j}\right) D_{\beta}^{m}\left(x_{i}, x_{j}\right)$. The multiple edges can
then be reduced to single edges by the properties $C_{\beta}^{n}=C_{\beta}, D_{\beta}^{m}=D_{\beta}$ and

$$
\begin{align*}
C_{\beta}\left(x_{i}, x_{j}\right) D_{\beta}\left(x_{i}, x_{j}\right) & =C_{\beta}\left(x_{i}, x_{j}\right) & & \text { for } \beta=1,3,5 \tag{6a}\\
& =0 & & \text { for } \beta=2,4,8, \tag{6b}\\
& =\delta_{x_{i} x_{j}} & & \text { for } \beta=6, \tag{6c}\\
& =C_{\beta}\left(x_{i}, x_{j}\right)-\delta_{x_{i} x_{j}} & & \text { for } \beta=7 . \tag{6d}
\end{align*}
$$

For $\beta=6$ and $7, \delta$ functions are involved. The vertices x_{i} and x_{j} should be merged, and the same procedure should be repeated.

To illustrate the method described above, we consider the following example which expresses $L_{1}(g ; G)$ in terms of $L_{4}\left(g^{\prime} ; G\right)$:

$$
\begin{align*}
& L_{1}\left(\bigcap_{2}^{3} ; G\right) \\
& =\sum_{\{x\}} C_{1}(12) C_{1}(13) C_{1}(14) C_{1}(23) D_{1}(24) D_{1}(34) \tag{7a}\\
& =\sum_{\{x\}} C_{4}(12) C_{4}(13) C_{4}(14) C_{4}(23) \times\left[C_{4}(24) C_{4}(34)+C_{4}(24) D_{4}(34)\right. \\
& +C_{4}(24) \delta(34)+D_{4}(24) C_{4}(34)+D_{4}(24) D_{4}(34)+D_{4}(24) \delta(34) \\
& \left.+\delta(24) C_{4}(34)+\delta(24) D_{4}(34)+\delta(24) \delta(34)\right] \tag{7b}\\
& =L_{4}(\swarrow ; G)+2 L_{4}(\Omega: G)+L_{4}(\Omega ; G)+2 L_{4}(\Omega ; G) \text {. } \tag{7c}
\end{align*}
$$

Here the arguments $(i j)$ are shorthand notations of $\left(x_{i}, x_{j}\right)$.
The relations $C_{1}=C_{4}$ and $D_{1}=C_{4}+D_{4}+\delta$ (see table 3) have been used to obtain ($7 b$). The first term in ($7 b$) gives the first term in ($7 c$). The second and fourth terms in (7b) are equal and give the second term in (7c). The fifth term in (7b) vanishes because $C_{4}(x, x)=0$; the sixth and eighth terms vanish because $C_{4} D_{4}=0$. Finally, the rest of the terms in (7b) contribute to the fourth term in (7c).

In general we can express the linear relations between two systems of lattice constant in the form

$$
\begin{equation*}
L_{\alpha}\left(g_{i}, G\right)=\sum_{j} t_{i j}^{\alpha \beta} L_{\beta}\left(g_{j} ; G\right) \tag{8}
\end{equation*}
$$

From the procedure described above some properties of the coefficients $t_{i j}^{\alpha \beta}$ can be observed easily:
(i) the diagonal element $t_{i i}^{\alpha \beta}=1$,
(ii) $t_{i j}^{\alpha \beta}=0$ if g_{j} has more vertices than g_{i},
(iii) $t_{i j}^{\alpha \beta}=0$ if g_{j} and g_{i} have the same number of vertices and g_{i} is not a subgraph of g_{j}.
Property (iii) comes from the fact that if g_{j} and g_{t} have the same number of vertices then the term $L_{\beta}\left(g_{j} ; G\right)$ must result from a term in the expansion of (4) which does not involve δ functions. Then g_{j} is obtained from adding some edges to g_{i}. Therefore, g_{i} is a subgraph of g_{j} and g_{j} has more edges than g_{i}. The above properties are true for all α and β. For certain sets of α and β if $r_{\alpha \beta}=0$ (see (3)), the element $t_{i j}^{\alpha \beta}$ is
non-zero only if g_{j} contains fewer vertices than g_{i}. And if $q_{\alpha \beta}=s_{\alpha \beta}=0, t_{i j}^{\alpha \beta}$ exists only if g_{t} is a subgraph of g_{J}.

From the above discussion, we can properly select a set of a finite number of graphs (for example, all connected graphs containing up to p vertices) and define the conversion matrix $T_{\alpha \beta}$ with elements $t_{i j}^{\alpha \beta}$ such that

$$
\begin{equation*}
L_{\alpha}=T_{\alpha \beta} \cdot L_{\beta} \tag{9}
\end{equation*}
$$

where L_{α} and L_{β} are column vectors the elements of which are the lattice constants $L_{\alpha}\left(g_{i} ; G\right)$ and $L_{\beta}\left(g_{j} ; G\right)$ for the set of graphs considered. Among the eight lattice constant systems shown in table 2 , there are 28 conversion matrices $T_{\alpha \beta}$ for each proper set of graphs considered. Not all of the matrices are independent.

From the procedure of expressing $L_{\alpha}\left(g_{i} ; G\right)$ in terms of $L_{\beta}\left(g_{j} ; G\right)$, it is easy to see that two matrices $T_{\alpha \beta}$ and $T_{\alpha^{\prime} \beta^{\prime}}$ are identical if

$$
\begin{equation*}
q_{\alpha \beta}=q_{\alpha^{\prime} \beta^{\prime}}, \quad r_{\alpha \beta}=r_{\alpha^{\prime} \beta^{\prime}}, \quad s_{\alpha \beta}=s_{\alpha^{\prime} \beta^{\prime}}, \tag{10a,b,c}
\end{equation*}
$$

and

$$
\begin{align*}
& C_{\beta}(x, x)=C_{\beta}(x, x), \quad D_{\beta}(x, x)=D_{\beta}(x, x), \tag{11a,b}\\
& C_{\beta}\left(x, x^{\prime}\right) D_{\beta}\left(x, x^{\prime}\right)=C_{\beta}\left(x, x^{\prime}\right) D_{\beta}\left(x, x^{\prime}\right) \tag{11c}
\end{align*}
$$

The above equations, however, cannot be simultaneously satisfied for any different pairs of $\alpha \beta$ and $\alpha^{\prime} \beta^{\prime}$. If $q_{\alpha \beta}=q_{\alpha^{\prime} \beta^{\prime}}=s_{\alpha \beta}=s_{\alpha^{\prime} \beta^{\prime}}=0$, all the requirements described by (11) can be waived because no δ functions are involved. Then we have the identities $T_{1,2}=T_{3,4}=T_{5,8}$ and $T_{2,1}=T_{4,3}=T_{8,5}$. It is straightforward to see from (9) that $T_{\alpha \beta}=$ $\left(T_{\beta \alpha}\right)^{-1}$. We also note that for any $\gamma, T_{\alpha \beta}=T_{\alpha \gamma} \cdot T_{\gamma \beta}=T_{\alpha \gamma} \cdot\left(T_{\beta \gamma}\right)^{-1}$. Therefore a knowledge of eight of the $T_{\alpha \beta}$, e.g. $T_{\alpha 1}$, gives any of the $28 T$-matrices.

4. Reduction of lattice constants

Consider two graphs g_{a} and g_{b}. Each of them has a subgraph isomorphic to a complete graph g_{c}. (A graph is complete if all pairs of vertices are connected. The simplest complete graphs are single edge, triangle, etc.) If the two subgraphs are brought into coincidence, i.e. the two subgraphs are 'glued' together vertex by vertex and edge by edge, to form a graph g_{r}, then g_{r} is called a reducible graph. A graph which cannot be formed in this way is called irreducible. A reducible graph has the product property that

$$
\begin{equation*}
L_{1}\left(g_{\mathrm{r}} ; g\right)=L_{1}\left(g_{\mathrm{a}} ; G\right) \cdot L_{1}\left(g_{\mathrm{b}} ; G\right) / L_{1}\left(g_{\mathrm{c}} ; G\right) \tag{12}
\end{equation*}
$$

provided G is a regular lattice. By regular lattice we mean that all vertices are equivalent and all edges are equivalent. The proof of (12) is simple and will not be given. We only note that if all edges of G are equivalent then all subgraphs of G which are isomorphic to a complete graph are equivalent.

In all lattice constant systems if G is a regular lattice, $L_{\alpha}\left(g_{r} ; G\right)$ of a reducible graph g_{r} can be expressed in terms of lattice constants $L_{\alpha}\left(g_{i} ; G\right)$ of irreducible graphs g_{i}. The numbers of vertices of g_{i} are equal to or less than the number of vertices of g_{r}. Examples of the reduction of lattice constants have been given by Domb (1960, 1974) for the weak lattice constant system L_{3}. We will show below why and how such a reduction can be done for an arbitrary lattice constant system L_{α}.

We first express $L_{1}\left(g_{\mathrm{r}} ; G\right)$ as a linear combination of $L_{\alpha}(g ; G)$, i.e.

$$
\begin{equation*}
L_{1}\left(g_{\mathrm{r}} ; G\right)=L_{\alpha}\left(g_{\mathrm{r}} ; G\right)+\sum_{i \neq \mathrm{r}} t_{\mathrm{ri}}^{1 \alpha \alpha} L_{\alpha}\left(g_{i} ; G\right) \tag{13}
\end{equation*}
$$

where we have used $t_{\mathrm{rr}}^{\mathrm{t}}=1$, and separated the diagonal term from the summation. Since g_{r} is reducible, (13) can be rewritten as

$$
\begin{equation*}
L_{\alpha}\left(g_{\mathrm{r}} ; G\right)=\frac{L_{1}\left(g_{\mathrm{a}} ; G\right) \cdot L_{1}\left(g_{\mathrm{b}} ; G\right)}{L_{1}\left(g_{c} ; G\right)}-\sum_{i \neq \mathrm{r}} t_{\mathrm{r} i}^{1 \alpha} L_{\alpha}\left(g_{i} ; G\right), \tag{14}
\end{equation*}
$$

where we have made use of (12). Each graph $g_{\mathrm{a}}, g_{\mathrm{b}}$ and g_{c} has a smaller number of vertices than g_{r}. The lattice constants $L_{1}\left(g_{\mathrm{a}} ; G\right), L_{1}\left(g_{\mathrm{b}} ; G\right)$ and $L_{1}\left(g_{\mathrm{c}} ; G\right)$ can further be expressed in terms of $L_{\alpha}(g ; G)$ with graphs g containing less vertices than g_{r}. Therefore, $L_{\alpha}\left(g_{r} ; G\right)$ can be expressed in terms of lattice constants $L_{\alpha}\left(g_{r}^{\prime} ; G\right)$, where each graph g_{r}^{\prime} either contains fewer vertices than g_{r}, or has the same number of vertices as g_{r}, but with more edges than g_{r}. If a graph g_{r}^{\prime} is still reducible, we can repeat the same procedure and express $L_{\alpha}\left(g_{r}^{\prime} ; G\right)$ in terms of $L_{\alpha}\left(g_{r}^{\prime \prime} ; G\right)$, etc. Eventually, $L_{\alpha}\left(g_{r} ; G\right)$ is expressed in terms of lattice constants of irreducible graphs which have either the same number of vertices as g_{r}, or fewer vertices than g_{r}.

Two examples of the reduction of lattice constants are shown below:

The lattice constants $L_{\alpha}(g ; G)$ are abbreviated as $L_{\alpha}(g)$ for simplicity.

5. Conclusions

We have considered eight different systems of extensive lattice constants. Some properties of these lattice constants are discussed. In particular we investigate a general method to express a lattice constant $L_{\alpha}\left(g_{i} ; G\right)$ as a linear combination of $L_{\beta}\left(g_{j} ; G\right)$. Such linear relations hold for any graph G. Properties of the coefficients $t_{i j}^{\alpha \beta}$ are also discussed. If the order (number of vertices) of g_{i} is low, the coefficients $t_{i j}^{\alpha \beta}$ can be obtained easily by the method described in 83 . For higher-order graphs $g_{\text {, }}$, the coefficients are difficult to determine manually. However, we can represent and identify graphs numerically (Chen and Lee 1981) and determine the coefficients by a computer. A straightforward application of the present method to relate L_{1} in terms of L_{3} has been carried out for graphs with up to nine edges. The results are too lengthy to be presented here, and will be published elsewhere.

For a regular lattice G, lattice constants $L_{\alpha}(g ; G)$ of all reducible graphs (including all articulated graphs) can be expressed in terms of lattice constants of irreducible graphs. A general method to find the reduction of lattice constants has been described.

In this article lattice constants are defined only for unrooted graphs (i.e. all vertices are of the same species). If the graphs g are rooted (having different species of vertices), differented pairs of vertices may have different C_{α} (and C_{α}) functions. A large number of different lattice constant systems exist. But only a few of them are useful and need further studies.

References

Chen H H and Lee F 1980 J. Phys. C: Solid State Phys. 132817

- 1981 J. Math. Phys. 222727

Domb C 1960, Adv. Phys. 9149
1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (London: Academic)
Essam J W 1967 J. Math. Phys. 8741
Sykes M F, Essam J W, Heap B R and Hiley B J 1966 J. Math. Phys. 71557
Wortis M 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (London: Academic)

